References

  1. Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence5(1),226–235. https://doi.org/10.4161/viru.25991
  2. Summers, W.C. (2004). Bacteriophage research early history, p 528. In Kutter E, Sulakvelidze A (ed), Bacteriophages: biology and applications. CRC Press, Boca Raton, FL.
  3. Pires, D. P., Vilas Boas, D., Sillankorva, S., & Azeredo, J. (2015). Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections.  Journal of virology89(15),7449–7456. https://doi.org/10.1128/JVI.00385-15
  4. Twort, F. (1915). An investigation on the nature of ultramicroscopic viruses. Lancet, 11, 1241-1243.
  5. d’Hérelle, F. (1917). Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes rendus de l’Académie des Sciences, 165, 373-375.
  6. Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.  Nature biotechnology32(11),1146–1150. https://doi.org/10.1038/nbt.3043
  7. Chen, Z., Guo, L., Zhang, Y., et al. (2014). Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. The Journal of Clinical Investigation, 124(8):3391-3406. DOI: 1172/jci72517
  8. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature biotechnology32(11), 1141–1145. https://doi.org/10.1038/nbt.3011
  9. Devlin, A. S., Marcobal, A., Dodd, D., Nayfach, S., Plummer, N., Meyer, T., Pollard, K. S., Sonnenburg, J. L., & Fischbach, M. A. (2016). Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell host & microbe20(6),709–715. https://doi.org/10.1016/j.chom.2016.10.021
  10. Kutateladze, M., & Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics.  Trends in biotechnology28(12), 591–595. https://doi.org/10.1016/j.tibtech.2010.08.001
  11. Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: treatment of human infections. Current pharmaceutical biotechnology,  11(1), 69–86. https://doi.org/10.2174/138920110790725401
  12. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America104(27),11197–11202. https://doi.org/10.1073/pnas.0704624104
  1. Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America106(12), 4629–4634. https://doi.org/10.1073/pnas.0800442106
  2. Maynard, N. D., Birch, E. W., Sanghvi, J. C., Chen, L., Gutschow, M. V., & Covert, M. W. (2010). A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS genetics,  6(7), e1001017. https://doi.org/10.1371/journal.pgen.1001017
  3. Shen, T. C., Albenberg, L., Bittinger, K., Chehoud, C., Chen, Y. Y., Judge, C. A., Chau, L., Ni, J., Sheng, M., Lin, A., Wilkins, B. J., Buza, E. L., Lewis, J. D., Daikhin, Y., Nissim, I., Yudkoff, M., Bushman, F. D., & Wu, G. D. (2015). Engineering the gut microbiota to treat hyperammonemia. The Journal of clinical investigation125(7),2841–2850. https://doi.org/10.1172/JCI79214
  4. Międzybrodzki, R., Borysowski, J., Weber-Dąbrowska, B., Fortuna, W., Letkiewicz, S., Szufnarowski, K., Pawełczyk, Z., Rogóż, P., Kłak, M., Wojtasik, E., & Górski, A. (2012). Clinical aspects of phage therapy. Advances in virus research83, 73–121. https://doi.org/10.1016/B978-0-12-394438-2.00003-7
  5. Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour, K. C., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G. F., & Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature medicine,  25(5), 730–733. https://doi.org/10.1038/s41591-019-0437-z
  6. Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., Benson, C. A., … Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial agents and chemotherapy61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17
  7. Céline Verheust, Katia Pauwels, Jacques Mahillon, Donald R. Helinski, and Philippe Herman (2010). Contained Use of Bacteriophages: Risk Assessment and Biosafety Recommendations. Applied Biosafety, 15(1), 32-44. 1177/153567601001500106
  8. Potera C. (2013). Phage renaissance: new hope against antibiotic resistance.  Environmental health perspectives121(2),a48–a53. https://doi.org/10.1289/ehp.121-a48
  9. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. http://dx.doi.org/10.1007/s10156-005-0408-9
  10. Kutateladze M, Adamia R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics.  Trends Biotechnol 28:591–595. http://dx.doi.org/10.1016/j.tibtech.2010.08.001
  1. Brüssow H. (2005). Phage therapy: the Escherichia coli experience. Microbiology (Reading, England)151(Pt 7), 2133–2140. https://doi.org/10.1099/mic.0.27849-0
  2. Bruttin, A., & Brüssow, H. (2005). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial agents and chemotherapy49(7), 2874–2878. https://doi.org/10.1128/AAC.49.7.2874-2878.2005
  3. Marza, J. A., Soothill, J. S., Boydell, P., & Collyns, T. A. (2006). Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns : journal of the International Society for Burn Injuries32(5), 644–646. https://doi.org/10.1016/j.burns.2006.02.012
  4. Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., & Lu, T. K. (2016). Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and molecular biology reviews:MMBR80(3),523–543. https://doi.org/10.1128/MMBR.00069-15
  5. Marinelli, L. J., Hatfull, G. F., & Piuri, M. (2012). Recombineering: A powerful tool for modification of bacteriophage genomes.  Bacteriophage2(1),5–14. https://doi.org/10.4161/bact.18778
  6. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Bacteriophage-based synthetic biology for the study of infectious diseases. Current opinion in microbiology19,59–69. https://doi.org/10.1016/j.mib.2014.05.022
  7. Saeidi, N., Wong, C. K., Lo, T. M., Nguyen, H. X., Ling, H., Leong, S. S., Poh, C. L., & Chang, M. W. (2011). Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen.  Molecular systems biology7, 521. https://doi.org/10.1038/msb.2011.55
  8. Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS microbiology letters363(4),fnw002. https://doi.org/10.1093/femsle/fnw002
  9. Cooper, C. J., Khan Mirzaei, M., & Nilsson, A. S. (2016). Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics. Frontiers in microbiology7, 1209. https://doi.org/10.3389/fmicb.2016.01209
  10. Ando H, Lemire S, Pires DP, Lu TK. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 2015 Sep 23; 1(3):187-196. doi: 1016/j.cels.2015.08.013 PMID: 26973885; PMCID: PMC4785837.
  1. Chen, M., Zhang, L., Xin, S., Yao, H., Lu, C., & Zhang, W. (2017). Inducible Prophage Mutant of Escherichia coliCan Lyse New Host and the Key Sites of Receptor Recognition Identification.  Frontiers in microbiology, 8, 147. https://doi.org/10.3389/fmicb.2017.00147
  2. Gebhart, D., Williams, S. R., & Scholl, D. (2017). Bacteriophage SP6 encodes a second tail spike protein that recognizes Salmonella enterica serogroups C2and C3Virology507, 263–266. https://doi.org/10.1016/j.virol.2017.02.025
  3. Hawkins, S. A., Layton, A. C., Ripp, S., Williams, D., & Sayler, G. S. (2008). Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1. Virology journal5, 97. https://doi.org/10.1186/1743-422X-5-97
  4. Heilpern AJ, Waldor MK. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol. 2003 Feb;185(3):1037-44. doi: 1128/jb.185.3.1037-1044.2003 PMID: 12533480; PMCID: PMC142820.
  5. Lin, T. Y., Lo, Y. H., Tseng, P. W., Chang, S. F., Lin, Y. T., & Chen, T. S. (2012). A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PloS one7(2), e30954. https://doi.org/10.1371/journal.pone.0030954
  6. Nguyen, A. H., Molineux, I. J., Springman, R., & Bull, J. J. (2012). Multiple genetic pathways to similar fitness limits during viral adaptation to a new host. Evolution; international journal of organic evolution66(2), 363–374. https://doi.org/10.1111/j.1558-5646.2011.01433.x
  7. Scholl, D., Cooley, M., Williams, S. R., Gebhart, D., Martin, D., Bates, A., & Mandrell, R. (2009). An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrobial agents and chemotherapy53(7), 3074–3080. https://doi.org/10.1128/AAC.01660-08
  8. Yoichi, M., Abe, M., Miyanaga, K., Unno, H., & Tanji, Y. (2005). Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Journal of biotechnology115(1), 101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003
  9. Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular cell66(5), 721–728.e3. https://doi.org/10.1016/j.molcel.2017.04.025
  10. Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature reviews. Microbiology8(5), 317–327. https://doi.org/10.1038/nrmicro2315
  11. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews: MMBR74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10
  12. Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of internal medicine151(5), 886–895.
  1. Neu H. C. (1992). The crisis in antibiotic resistance. Science (New York, N.Y.)257 (5073), 1064–1073. https://doi.org/10.1126/science.257.5073.1064
  2. Wright, G. D., & Sutherland, A. D. (2007). New strategies for combating multidrug-resistant bacteria. Trends in molecular medicine13(6),260–267. https://doi.org/10.1016/j.molmed.2007.04.004
  3. Beck, A., Wurch, T., Bailly, C., & Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nature reviews. Immunology10(5), 345–352. https://doi.org/10.1038/nri2747
  4. Foltz, I. N., Karow, M., & Wasserman, S. M. (2013). Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. Circulation127(22), 2222–2230. https://doi.org/10.1161/CIRCULATIONAHA.113.002033
  5. Gladstone, E. G., Molineux, I. J., & Bull, J. J. (2012). Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phage. Journal of biological engineering6(1), 13. https://doi.org/10.1186/1754-1611-6-13
  6. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America104(27),11197–11202. https://doi.org/10.1073/pnas.0704624104
  7. Montag, D., Riede, I., Eschbach, M. L., Degen, M., & Henning, U. (1987). Receptor-recognizing proteins of T-even type bacteriophages. Constant and hypervariable regions and an unusual case of evolution. Journal of molecular biology196(1),165–174. https://doi.org/10.1016/0022-2836(87)90519-5
  8. Pouillot, F., Blois, H., & Iris, F. (2010). Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecurity and bioterrorism : biodefense strategy, practice, and science8(2), 155–169. https://doi.org/10.1089/bsp.2009.0057
  9. Tétart, F., Repoila, F., Monod, C., & Krisch, H. M. (1996). Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. Journal of molecular biology258(5),726–731. https://doi.org/10.1006/jmbi.1996.0281
  10. Trojet, S. N., Caumont-Sarcos, A., Perrody, E., Comeau, A. M., & Krisch, H. M. (2011). The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage’s host specificity. Genome biology and evolution3, 674–686. https://doi.org/10.1093/gbe/evr059
  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Water, P. (2007). Molecular biology of the cell (5th ed.) Garland Science, New York, NY.
  2. Snyder, L., Peters, J.E., Henkin, T.M., & Champness, W. (2013). Molecular genetics of bacteria (4th ed.) ASM Press, Washington, DC.
  3. Loessner, M. J., Rees, C. E., Stewart, G. S., & Scherer, S. (1996). Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Applied and environmental microbiology62(4), 1133–1140. https://doi.org/10.1128/AEM.62.4.1133-1140.1996
  4. Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., & Hu, F. (2013). Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PloS one8(7), e68562. https://doi.org/10.1371/journal.pone.0068562
  5. Ellis, H. M., Yu, D., DiTizio, T., & Court, D. L. (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America98(12), 6742–6746. https://doi.org/10.1073/pnas.121164898
  6. Court, D. L., Sawitzke, J. A., & Thomason, L. C. (2002). Genetic engineering using homologous recombination.  Annual review of genetics36, 361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104
  7. Marinelli, L. J., Piuri, M., Swigonová, Z., Balachandran, A., Oldfield, L. M., van Kessel, J. C., & Hatfull, G. F. (2008). BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PloS one3(12), e3957. https://doi.org/10.1371/journal.pone.0003957
  8. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., & Court, D. L. (2009). Recombineering: a homologous recombination-based method of genetic engineering. Nature protocols4(2), 206–223. https://doi.org/10.1038/nprot.2008.227
  9. Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C., & Court, D. L. (2004). In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Virology319(2),185–189. https://doi.org/10.1016/j.virol.2003.11.007
  10. Sarkis, G. J., Jacobs, W. R., Jr, & Hatfull, G. F. (1995). L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Molecular microbiology15(6),1055–1067. https://doi.org/10.1111/j.1365-2958.1995.tb02281.x
  11. Tanji, Y., Furukawa, C., Na, S. H., Hijikata, T., Miyanaga, K., & Unno, H. (2004). Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage.  Journal of biotechnology114(1-2),11–20. https://doi.org/10.1016/j.jbiotec.2004.05.011
  12. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America97(11),5978–5983. https://doi.org/10.1073/pnas.100127597
  1. Copeland, N. G., Jenkins, N. A., & Court, D. L. (2001). Recombineering: a powerful new tool for mouse functional genomics. Nature reviews. Genetics2(10), 769–779. https://doi.org/10.1038/35093556
  2. Swaminathan, S., Ellis, H. M., Waters, L. S., Yu, D., Lee, E. C., Court, D. L., & Sharan, S. K. (2001). Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis (New York, N.Y. : 2000)29(1), 14–21. https://doi.org/10.1002/1526-968x(200101)29:1<14::aid-gene1001>3.0.co;2-x
  3. Sarov, M., Schneider, S., Pozniakovski, A., Roguev, A., Ernst, S., Zhang, Y., Hyman, A. A., & Stewart, A. F. (2006). A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature methods3(10), 839–844. https://doi.org/10.1038/nmeth933
  4. Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nature genetics20(2), 123–128. https://doi.org/10.1038/2417
  5. Muyrers, J. P., Zhang, Y., Testa, G., & Stewart, A. F. (1999). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic acids research27(6), 1555–1557. https://doi.org/10.1093/nar/27.6.1555
  6. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America97(12), 6640–6645. https://doi.org/10.1073/pnas.120163297
  7. Piuri, M., & Hatfull, G. F. (2006). A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Molecular microbiology,  62(6), 1569–1585. https://doi.org/10.1111/j.1365-2958.2006.05473.x
  8. Ranallo, R. T., Barnoy, S., Thakkar, S., Urick, T., & Venkatesan, M. M. (2006). Developing live Shigella vaccines using lambda Red recombineering. FEMS immunology and medical microbiology47(3),462–469. https://doi.org/10.1111/j.1574-695X.2006.00118.x
  9. Lopes, A., Amarir-Bouhram, J., Faure, G., Petit, M. A., & Guerois, R. (2010). Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic acids research38(12), 3952–3962. https://doi.org/10.1093/nar/gkq096
  10. Levin, B. R., & Bull, J. J. (2004). Population and evolutionary dynamics of phage therapy. Nature reviews. Microbiology2(2),166–173. https://doi.org/10.1038/nrmicro822
  1. Hagens, S., & Bläsi, U. (2003). Genetically modified filamentous phage as bactericidal agents: a pilot study. Letters in applied microbiology37(4), 318–323. https://doi.org/10.1046/j.1472-765x.2003.01400.x
  2. Fairhead H. (2009). SASP gene delivery: a novel antibacterial approach. Drug news & perspectives22(4), 197–203. https://doi.org/10.1358/dnp.2009.22.4.1367708
  3. Smartt, A. E., Xu, T., Jegier, P., Carswell, J. J., Blount, S. A., Sayler, G. S., & Ripp, S. (2012). Pathogen detection using engineered bacteriophages. Analytical and bioanalytical chemistry402(10),3127–3146. https://doi.org/10.1007/s00216-011-5555-5
  4. Wolber, P. K., & Green, R. L. (1990). Detection of bacteria by transduction of ice nucleation genes. Trends in biotechnology8(10),276–279. https://doi.org/10.1016/0167-7799(90)90195-4
  5. Edgar, R., McKinstry, M., Hwang, J., Oppenheim, A. B., Fekete, R. A., Giulian, G., Merril, C., Nagashima, K., & Adhya, S. (2006). High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America103(13), 4841–4845. https://doi.org/10.1073/pnas.0601211103
  6. Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C., & Venter, J. C. (2003). Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America100(26), 15440–15445. https://doi.org/10.1073/pnas.2237126100
  7. Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H., Calvey, C. H., … Venter, J. C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science (New York, N.Y.)329(5987),52–56. https://doi.org/10.1126/science.1190719
  8. Gladstone, E. G., Molineux, I. J., & Bull, J. J. (2012). Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phage. Journal of biological engineering6(1), 13. https://doi.org/10.1186/1754-1611-6-13
  9. Westra, E. R., Buckling, A., & Fineran, P. C. (2014). CRISPR-Cas systems: beyond adaptive immunity. Nature reviews. Microbiology12(5),317–326. https://doi.org/10.1038/nrmicro3241
  10. Kiro, R., Shitrit, D., & Qimron, U. (2014). Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA biology11(1), 42–44. https://doi.org/10.4161/rna.27766
  11. Chan, L. Y., Kosuri, S., & Endy, D. (2005). Refactoring bacteriophage T7. Molecular systems biology1, 2005.0018. https://doi.org/10.1038/msb4100025
  1. Lu TK, Koeris MS, Chevalier B, Holder J, McKenzie G, Brownell D. May (2013). Recombinant phage and methods. US patent, 13/627,060.
  2. Curtin, J. J., & Donlan, R. M. (2006). Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrobial agents and chemotherapy50(4),1268–1275. https://doi.org/10.1128/AAC.50.4.1268-1275.2006
  3. Sillankorva, S., Neubauer, P., & Azeredo, J. (2008). Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC biotechnology,  8, 79. https://doi.org/10.1186/1472-6750-8-79
  4. Sillankorva, S., Neubauer, P., & Azeredo, J. (2010). Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling26(5), 567–575. https://doi.org/10.1080/08927014.2010.494251
  5. Fu, W., Forster, T., Mayer, O., Curtin, J. J., Lehman, S. M., & Donlan, R. M. (2010). Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrobial agents and chemotherapy54 (1), 397–404. https://doi.org/10.1128/AAC.00669-09
  6. Rhoads, D. D., Wolcott, R. D., Kuskowski, M. A., Wolcott, B. M., Ward, L. S., & Sulakvelidze, A. (2009). Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. Journal of wound care18(6), 237–243. https://doi.org/10.12968/jowc.2009.18.6.42801
  7. McVay, C. S., Velásquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial agents and chemotherapy51(6), 1934–1938. https://doi.org/10.1128/AAC.01028-06
  8. Wright, A., Hawkins, C. H., Anggård, E. E., & Harper, D. R. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery34(4), 349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x
  9. Carmody, L. A., Gill, J. J., Summer, E. J., Sajjan, U. S., Gonzalez, C. F., Young, R. F., & LiPuma, J. J. (2010). Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. The Journal of infectious diseases201(2), 264–271. https://doi.org/10.1086/649227
  10. Hawkins C, Harper D, Burch D, Anggård E, Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol. 2010 Dec 15;146(3-4):309-13. doi: 1016/j.vetmic.2010.05.014. Epub 2010 May 12. PMID: 20627620.
  1. Fukuda, K., Ishida, W., Uchiyama, J., Rashel, M., Kato, S., Morita, T., Muraoka, A., Sumi, T., Matsuzaki, S., Daibata, M., & Fukushima, A. (2012). Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PloS one7(10), e47742. https://doi.org/10.1371/journal.pone.0047742
  2. Trigo, G., Martins, T. G., Fraga, A. G., Longatto-Filho, A., Castro, A. G., Azeredo, J., & Pedrosa, J. (2013). Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS neglected tropical diseases7(4), e2183. https://doi.org/10.1371/journal.pntd.0002183
  3. Samson, J. E., Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages: defeating bacterial defences. Nature reviews.Microbiology11(10),675–687. https://doi.org/10.1038/nrmicro3096
  4. Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America106(12), 4629–4634. https://doi.org/10.1073/pnas.0800442106
  5. Yoichi, M., Abe, M., Miyanaga, K., Unno, H., & Tanji, Y. (2005). Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Journal of biotechnology115(1), 101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003
  6. Heilpern AJ, Waldor MK. (2003). pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185:1037–1044. http://dx.doi.org/10.1128/JB.185.3.1037-1044.2003
  7. Ando H, Lemire S, Pires DP, Lu TK. (2015). Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1:187–196. http://dx.doi.org/10.1016/j.cels.2015.08.013
  8. Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage1(2), 66–85. https://doi.org/10.4161/bact.1.2.15845
  9. Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage1(2),111–114. https://doi.org/10.4161/bact.1.2.14590
  10. Paul, V. D., Sundarrajan, S., Rajagopalan, S. S., Hariharan, S., Kempashanaiah, N., Padmanabhan, S., Sriram, B., & Ramachandran, J. (2011). Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC microbiology11,195. https://doi.org/10.1186/1471-2180-11-195
  11. Loessner M, Rees C, Stewart G, Scherer S. (1996). Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria Appl Environ Microbiol 62:1133–1140.
  12. Piuri, M., Jacobs, W. R., Jr, & Hatfull, G. F. (2009). Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PloS one4(3), e4870. https://doi.org/10.1371/journal.pone.0004870
  1. Bar, H., Yacoby, I., & Benhar, I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC biotechnology8, 37. https://doi.org/10.1186/1472-6750-8-37
  2. Frenkel, D., & Solomon, B. (2002). Filamentous phage as vector-mediated antibody delivery to the brain. Proceedings of the National Academy of Sciences of the United States of America99(8),5675–5679. https://doi.org/10.1073/pnas.072027199
  3. Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moore, J. P., Nabel, G. J., Sodroski, J., Wilson, I. A., & Wyatt, R. T. (2004). HIV vaccine design and the neutralizing antibody problem. Nature immunology5(3), 233–236. https://doi.org/10.1038/ni0304-233
  4. Sathaliyawala, T., Rao, M., Maclean, D. M., Birx, D. L., Alving, C. R., & Rao, V. B. (2006). Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines. Journal of virology80 (15), 7688–7698. https://doi.org/10.1128/JVI.00235-06
  5. Ren, Z. J., Tian, C. J., Zhu, Q. S., Zhao, M. Y., Xin, A. G., Nie, W. X., Ling, S. R., Zhu, M. W., Wu, J. Y., Lan, H. Y., Cao, Y. C., & Bi, Y. Z. (2008). Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine26(11),1471–1481. https://doi.org/10.1016/j.vaccine.2007.12.053
  6. Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., Chiang, Y. M., & Belcher, A. M. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science (New York, N.Y.)312(5775), 885–888. https://doi.org/10.1126/science.1122716
  7. Lee, Y. J., Yi, H., Kim, W. J., Kang, K., Yun, D. S., Strano, M. S., Ceder, G., & Belcher, A. M. (2009). Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science (New York, N.Y.)324(5930), 1051–1055. https://doi.org/10.1126/science.1171541
  8. Murugesan, M., Abbineni, G., Nimmo, S. L., Cao, B., & Mao, C. (2013). Virus-based photo-responsive nanowires formed by linking site-directed mutagenesis and chemical reaction. Scientific reports,  3, 1820. https://doi.org/10.1038/srep01820
  9. Rong, J., Lee, L. A., Li, K., Harp, B., Mello, C. M., Niu, Z., & Wang, Q. (2008). Oriented cell growth on self-assembled bacteriophage M13 thin films. Chemical communications (Cambridge, England), (41), 5185–5187. https://doi.org/10.1039/b811039e
  1. Merzlyak, A., Indrakanti, S., & Lee, S. W. (2009). Genetically engineered nanofiber-like viruses for tissue regenerating materials.  Nano letters9(2), 846–852. https://doi.org/10.1021/nl8036728
  2. Yoo, S. Y., Merzlyak, A., & Lee, S. W. (2014). Synthetic phage for tissue regeneration. Mediators of inflammation2014, 192790. https://doi.org/10.1155/2014/192790
  3. Mao, C., Liu, A., & Cao, B. (2009). Virus-based chemical and biological sensing. Angewandte Chemie (International ed. in English)48(37),6790–6810. https://doi.org/10.1002/anie.200900231
  4. Lee, J. W., Song, J., Hwang, M. P., & Lee, K. H. (2013). Nanoscale bacteriophage biosensors beyond phage display. International journal of nanomedicine8, 3917–3925. https://doi.org/10.2147/IJN.S51894
  5. Yi, H., Ghosh, D., Ham, M. H., Qi, J., Barone, P. W., Strano, M. S., & Belcher, A. M. (2012). M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano letters,  12(3), 1176–1183. https://doi.org/10.1021/nl2031663
  6. Lee, S. W., Mao, C., Flynn, C. E., & Belcher, A. M. (2002). Ordering of quantum dots using genetically engineered viruses. Science (New York, N.Y.)296(5569), 892–895. https://doi.org/10.1126/science.1068054
  7. Lee, S.W., Wood, B.M., & Belcher, A.M. (2003). Chiral smectic C structures of virus-based films. Langmuir, 19 (5):1592–1598. http://dx.doi.org/10.1021/la026387w
  8. Lee, S.W., Lee, S.K., & Belcher, A.M. (2003). Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv Mater, 15(9):689–692. http://dx.doi.org/10.1002/adma.200304818
  9. Ni, J., Lee, S.W., White, J.M., & Belcher, A.M. (2004). Molecular orientation of a ZnS-nanocrystal-modified M13 virus on a silicon substrate. J Polym Sci Part B Polym Phys, 42(4):629–635. http://dx.doi.org/10.1002/polb.10754
  10. Nam, K.T., Peelle, B.R., Lee, S.W., & Belcher, A.M. (2004). Genetically driven assembly of nanorings based on the M13 virus. Nano Lett, 4(1):23–27. http://dx.doi.org/10.1021/nl0347536
  11. Lee, S.W., & Belcher, A.M. (2004). Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett, 4(3):387–390. http://dx.doi.org/10.1021/nl034911t
  12. Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., Chiang, Y. M., & Belcher, A. M. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science (New York, N.Y.)312(5775), 885–888. https://doi.org/10.1126/science.1122716