References

  1. Meng B, Lever AM. Wrapping up the bad news-HIV assembly and release. Retrovirology. 2013;10(1):5. doi: 10.1186/1742-4690-10-5, PMID 23305486.
  2. Luten J. Virus structure and classification. Essent Hum Virol. 2016;19.
  3. Poltronieri P, Sun B, Mallardo M. RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Curr Genomics. 2015;16(5):327-35. doi: 10.2174/1389202916666150707160613, PMID 27047253.
  4. Duffy S. Why are RNA virus mutation rates so damn high?. PLoS Biol. 2018;16(8):e3000003. doi: 10.1371/journal.pbio.3000003, PMID 30102691.
  5. Saiz JC. Vaccines against RNA viruses. Vaccines. 2020;8(3):479. doi: 10.3390/vaccines8030479, PMID 32867098.
  6. Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules. 2020;25(9):2070. doi: 10.3390/molecules25092070, PMID 32365518.
  7. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841. doi: 10.1101/cshperspect.a006841, PMID 22229120.
  8. Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279-90. doi: 10.1038/nrmicro2747, PMID 22421880.
  9. Montagnier L, Chermann JC, Barré-Sinoussi F, Klatzmann D, Wain-Hobson S, Alizon M et al. (1985). Lymphadenopathy associated virus and its etiological role in AIDS Retroviruses in Human Lymphoma/leukemia. Princess Takamatsu Symp. Proceedings of the 15th international symposium of the princess Takamatsu cancer ResearchFund, Tokyo. 1984;15. PMID 6100650.
  10. Vahlne A. A historical reflection on the discovery of human retroviruses. Retrovirology. 2009;6(1):40. doi: 10.1186/1742-4690-6-40, PMID 19409074.
  11. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Human immunodeficiency virus (HIV). Transfus Med Hemother. 2016;43(3):203-22. doi: 10.1159/000445852, PMID 27403093.
  12. Sakuragi JI. Morphogenesis of the infectious HIV-1 virion. Front Microbiol. 2011;2:242. doi: 10.3389/fmicb.2011.00242, PMID 22163227.
  13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121508/.
  14. Jha V, Rustagi K, Gharat K, Sonawane N, Rathod M, Patel R et al. Human immunodeficiency virus type 1: role of proteins in the context of viral life cycle. J Adv Biotechnol Exp Ther. 2022;5(2):307-19. doi: 10.5455/jabet.2022.d117.
  15. Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8):a006866. doi: 10.1101/cshperspect.a006866, PMID 22908191.
  16. Pincus SH, Craig RB, Weachter L, LaBranche CC, Nabi R, Watt C et al. Bispecific anti-HIV immunoadhesins that bind Gp120 and gp41 have broad and potent HIV-neutralizing activity. Vaccines. 2021;9(7):774. doi: 10.3390/vaccines9070774, PMID 34358190.
  17. Wensel D, Sun Y, Davis J, Li Z, Zhang S, McDonagh T et al. A novel gp41-binding adnectin with potent anti-HIV activity is highly synergistic when linked to a CD4-binding adnectin. J Virol. 2018;92(14):e00421-18. doi: 10.1128/JVI.00421-18, PMID 29743355.
  18. Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. ”Fusion and binding inhibition” key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv. 2017;24(1):608-21. doi: 10.1080/10717544.2016.1228717, PMID 28240046.
  19. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol. 2009;385(3):693-713. doi: 10.1016/j.jmb.2008.10.071, PMID 19022262.
  20. Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2(4):a007161. doi: 10.1101/cshperspect.a007161, PMID 22474613.
  21. Craigie R, Bushman FD. Hivdna integration. Cold Spring Harb Perspect Med. 2012;2(7):a006890. doi: 10.1101/cshperspect.a006890, PMID 22762018.
  22. Rosen CA. Tat and Rev: positive modulators of human immunodeficiency virus gene expression. Gene Expr. 1991;1(2):85-90. PMID 1820213.
  23. Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479-480:403-17. doi: 10.1016/j.virol.2015.03.021, PMID 25816761.
  24. Pau AK, George JM. Antiretroviral therapy. Curr Drugs. 2014;28(3):371-402. doi: 10.1016/j.idc.2014.06.001.
  25. Eggleton JS, Nagalli S. Highly active antiretroviral therapy (HAART); 2020.
  26. Verma AS, Kumar V, Saha MK, Dutta S, Singh A. HIV: biology to treatment. Nanobiomedicine. 2020:(167-97).
  27. Harris M, Nosyk B, Harrigan R, Lima VD, Cohen C, Montaner J. Cost-effectiveness of antiretroviral therapy for multidrug-resistant HIV: past, present, and future. AIDS Res Treat. 2012;2012:595762. doi: 10.1155/2012/595762, PMID 23193464.
  28. Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279-90. doi: 10.1038/nrmicro2747, PMID 22421880.
  29. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. doi: 10.3390/molecules21050559, PMID 27136524.
  30. Bhat SG. Medicinal plants and its pharmacological values. Nat Med Plants. 2022;217.
  31. Jachak SM, Saklani A. Challenges and opportunities in drug discovery from plants. Current science; 2007. p. 1251-7.
  32. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83-100. doi: 10.1038/s41577-020-00479-7, PMID 33353987.
  33. Sohail MN, Rasul F, Karim A, Kanwal U, Attitalla IH. Plant as a source of natural antiviral agents. Asian J Anim Vet Adv. 2011;6(12):1125-52. doi: 10.3923/ajava.2011.1125.1152.
  34. Singh D, Chaudhuri PK. Chemistry and pharmacology of Tinospora cordifolia. Nat Prod Commun. 2017;12(2):299-308. doi: 10.1177/1934578X1701200240, PMID 30428235.
  35. Bhalerao AS, Verma RD, Didwana SV, Teli CN. Tinospora cordifolia (Thunb.) Miers (Guduchi)- an overview. Int J Green Herb Chem. 2016:2278-3229.
  36. Singh J, Sinha K, Sharma A, Mishra NP, Khanuja SP. Traditional uses of Tinospora cordifolia (Guduchi). J Med Aromat Plant Sci. 2003;25:748-51.
  37. Available from: https://www.researchgate.net/publication/348350415_ONE_PLANT_ABUNDANT_ROLES_Tinospora_cordifolia.
  38. Rawat N, Roushan R. Guduchi: A potential drug in Ayurveda. World J Pharm Res. 2018;7(12):355-61.
  39. Shefali C, Nilofer S. Gaduchi-the best ayurvedic herb. J Pharm Innov. 2013;2(4).
  40. Shefali C, Nilofer S. Gaduchi-the best ayurvedic herb. J Pharm Innov. 2013;2(4).
  41. Acharya RN, Buha MM, Sojitra NH. Guduchi (Tinospora cordifolia (Wild.) Miers): A comprehensive Review of its internal administration. J Drug Res Ayurveda Sci. 2020;5:98-120.
  42. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) – validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010;1(2):112-21. doi: 10.4103/0974-7788.64405, PMID 20814526.
  43. Kumar DV, Geethanjali B, Avinash KO, Kumar JR, Basalingappa KM. Tinospora cordifolia: the antimicrobial property of the leaves of amruthaballi. J BacteriolMycol Open Access. 2017;5(5):363-71.
  44. Kakkar A, Verma DR, Suryavanshi S, Dubey P. Characterization of chemical constituents of Tinospora cordifolia. Chem Nat Compd. 2013;49(1):177-9. doi: 10.1007/s10600-013-0550-z.
  45. Sinha K, Mishra NP, Singh J, Khanuja SPS. Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic applications: a review; 2004.
  46. Chulet R, Pradhan P. A review on rasayana. Pharmacogn Rev. 2009;3(6):229.
  47. Polu PR, Nayanbhirama U, Khan S, Maheswari R. Assessment of free radical scavenging and anti-proliferative activities of TinosporacordifoliaMiers (Willd). BMC Complement Altern Med. 2017;17(1):457. doi: 10.1186/s12906-017-1953-3, PMID 28893230.
  48. Ilaiyaraja N, Khanum F. Antioxidant potential of Tinospora cordifolia extracts and their protective effect on oxidation of biomolecules. Pharmacogn J. 2011;3(20):56-62. doi: 10.5530/pj.2011.20.11.
  49. Upadhyay G, Tewari LM, Tewari G, Chopra N, Pandey NC, Upadhyay SK et al. Evaluation of antioxidant potential of stem and leaf extracts of Himalayan Tinospora cordifolia Hook. f. Open Bioact Compd J. 2021;9(1):2-8. doi: 10.2174/1874847302109010002.
  50. Garg M, Agarwal P, Bora A, Sood A, Pradhan R. A systematic review on the bioactive compounds and health benefits of Tinospora cordifolia; 2022.
  51. Agarwal S, Ramamurthy PH, Fernandes B, Rath A, Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: an in vitro study. Dent Res J (Isfahan). 2019;16(1):24-8. doi: 10.4103/1735-3327.249556, PMID 30745915.
  52. Praiwala B, Priyanka S, Raghu N, Gopenath N, Gnanasekaran A, Karthikeyan M et al. In vitro anti-bacterial activity of Tinospora cordifolia leaf extract and its phytochemical screening. J Biomed Sci. 2018;5(2):10-7. doi: 10.3126/jbs.v5i2.23633.
  53. Prasad B, Chauhan A. AntiOxidant and antimicrobial studies of Tinospora cordifolia (Guduchi/Giloy) stems and roots under in-vitro condition. Int. Adv MicrobiolHealth. Res. 2019;3(1):1-10.
  54. Joladarashi D, Chilkunda ND, Salimath PV. Glucose uptake-stimulatory activity of Tinospora cordifolia stem extracts in Ehrlich ascites tumor cell model system. J Food Sci Technol. 2014;51(1):178-82. doi: 10.1007/s13197-011-0480-3, PMID 24426067.
  55. Sharma R, Bolleddu R, Maji JK, Ruknuddin G, Prajapati PK. In-vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of guduchi (Tinospora cordifolia [willd.] miers) prepared with ayurvedicbhavana process. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.642300.
  56. Biswas P, Saha A, Maity LN. Antistress activity of Tinospora cordifolia with application of yoga. Int J. 2015;6(3):220-4. doi: 10.47552/ijam.v6i3.630.
  57. Manjunath SE, Nayak RP, Venkatappa KG, Rai MS. Evaluation of hypolipidemic effect of Tinospora cordifolia in cholesterol diet induced hyperlipidemia in rats. Int J Basic Clin Pharmacol. 2016;5(4):1286-92.
  58. Stanely Mainzen Prince P, Menon VP. Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives17. Phytother Res. 2003;4(4):410-3. doi: 10.1002/ptr.1130, PMID 12722152.
  59. Kumar V, Modi PK, Saxena KK. Exploration of hepatoprotective activity of aqueous extract of Tinospora cordifolia-an experimental study. Asian J Pharm Clin Res. 2013;6(1):87-91.
  60. Sharma B, Dabur R. Protective effects of Tinospora cordifolia on hepatic and gastrointestinal toxicity induced by chronic and moderate alcoholism. Alcohol Alcohol. 2016;51(1):1-10. doi: 10.1093/alcalc/agv130, PMID 26589585.
  61. Ahmad R, Srivastava AN, Khan MA. Evaluation of in vitro anticancer activity of stem of Tinospora cordifolia against human breast cancer and Vero cell lines. J Med Plants Stud. 2015;3(4):33-7.
  62. Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F et al. Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways. Int J Immunopathol Pharmacol. 2019;33:2058738419855567. doi: 10.1177/2058738419855567, PMID 31663444.
  63. Jagetia GC. Anticancer activity of Giloe, Tinospora cordifolia (Willd.) Miers ex Hook. F &Thoms. IntJ complement alt Med12. 2019;2:79-85.
  64. Patil S, Ashi H, Hosmani J, Almalki AY, Alhazmi YA, Mushtaq S et al. Tinospora cordifolia (Thunb.) Miers (Giloy) inhibits oral cancer cells in a dose-dependent manner by inducing apoptosis and attenuating epithelial-mesenchymal transition. Saudi J Biol Sci. 2021;28(8):4553-9. doi: 10.1016/j.sjbs.2021.04.056.
  65. Mohan V, Koul A. Anticancer potential of Tinospora cordifolia and arabinogalactan against benzo (a) pyrene induced pulmonary tumorigenesis: a study in relevance to various biomarkers. J HerbMed Pharmacol. 2018;7(4).
  66. Sharma P, Dwivedee BP, Bisht D, Dash AK, Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon. 2019;5(9):e02437. doi: 10.1016/j.heliyon.2019.e02437, PMID 31701036.
  67. Hashilkar NK, Patil PA, Bagi JG, Patil SY, Angadi NB. Influence of Tinospora cordifolia on wound healing in Wistar rats. Int J Basic Clin Pharmacol. 2016;5(3):923-8. doi: 10.18203/2319-2003.ijbcp20161546.
  68. FERNANDEZ M, SHIVASHEKAREGOWDA NK, YIN YH. The potential role of genus Tinospora in wound healing: a review. Int J Pharm Pharm Sci:21-9. doi: 10.22159/ijpps.2021v13i4.37980.
  69. Singh AK, Preethi BO, Singh HN, Gangwar AK, Niyogi D, Devi KS. Comparative evaluation of the wound healing potential of Tinospora cordifolia and its combination with local insulin therapy in diabetic rabbits. J Pharmacogn Phytochem. 2017;6:1812-7.
  70. Bagon N, Edejer L, Hizon A, Ibañez E, Jao E, Joson E et al. Gel trial formulation of the crude ethanolic extract of TinosporaCordifolia (willed.) Miers. Stem and evaluation of its anti-inflammatory, wound-healing and skin irritation activities. Planta Med. 2016;82(05):PB16.
  71. Abiramasundari G, Sumalatha KR, Sreepriya M. Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro. J Ethnopharmacol. 2012;141(1):474-80. doi: 10.1016/j.jep.2012.03.015, PMID 22449439.
  72. Ghatpande NS, Misar AV, Waghole RJ, Jadhav SH, Kulkarni PP. Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci Rep. 2019;9(1):10969. doi: 10.1038/s41598-019-47458-0, PMID 31358831.
  73. Philip S, Tom G, Vasumathi AV. Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract–a preclinical study. J Pharm Pharmacol. 2018;70(8):1113-25. doi: 10.1111/jphp.12932, PMID 29770441.
  74. Sannegowda KM, Venkatesha SH, Moudgil KD. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage. Int J Immunopathol Pharmacol. 2015;28(4):521-31. doi: 10.1177/0394632015608248, PMID 26467057.
  75. Zalawadia R, Gandhi C, Patel V, Balaraman R. The protective effect of Tinospora cordifolia on various mast cell mediated allergic reactions. Pharm Biol. 2009;47(11):1096-106. doi: 10.3109/13880200903008690.
  76. Patel A, Bigoniya P, Singh CS, Patel NS. Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A. Indian J Pharmacol. 2013;45(3):237-43. doi: 10.4103/0253-7613.111919, PMID 23833365.
  77. Hussain L, Akash MS, Ain NU, Rehman K, Ibrahim M. The analgesic, anti-inflammatory and anti-pyretic activities of Tinospora cordifolia. Adv Clin Exp Med. 2015;24(6):957-64. doi: 10.17219/acem/27909, PMID 26771966.
  78. Immunomodulatory efficiency of Tinospora cordifolia against viral infections.
  79. Zahiruddin S, Parveen A, Khan W, Ibrahim M, Want MY, Parveen R et al. Metabolomic profiling and immunomodulatory activity of a polyherbal combination in cyclophosphamide-induced immunosuppressed mice. Front Pharmacol. 2021;12:647244. doi: 10.3389/fphar.2021.647244, PMID 35046795.
  80. Yates CR, Bruno EJ, Yates MED. Tinospora cordifolia: a review of its immunomodulatory properties. J Diet Suppl. 2022;19(2):271-85. doi: 10.1080/19390211.2021.1873214, PMID 33480818.
  81. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MN. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol. 2014;46(2):176-80. doi: 10.4103/0253-7613.129312, PMID 24741189.
  82. Mangaiyarkarasi A, Ilyas MM 2015. INTRODUCTORY PHYTOCHEMICAL SCREENING AND FLUORESCENCE ANALYSIS IN THE LEAVES OF TINOSPORA CORDIFOLIA (THUNB.) MIERS.
  83. Spandana U, Ali SL, Nirmala T, Santhi M, Babu SS. A review on Tinospora cordifolia. Int J Curr Pharm Rev Res. 2013;4(2):61-8.
  84. SRIVASTAVA AK, SINGH VK. Tinospora cordifolia (giloy): a magical shrub. Asian J Adv Med Sci. 2021:22-30.
  85. Nazir I, Chauhan RS. Qualitative phytochemical analysis of Tinospora cordifolia and With aniasomnifera. J Pharm Innov. 2018;7(10):333-6.
  86. Grover D, Dutta S, Farswan AS. Tinospora cordifolia: pharmacognostical and phytochemical screening. System. 2013;1:2.
  87. Estari M, Venkanna L, Reddy AS. In vitro anti-HIV activity of crude extracts from Tinospora cordifolia. BMC Infect Dis. 2012;12(1):1-.
  88. Rege A, A, Ambaye Y, R, Deshmukh A, R. In-vitro testing of anti-HIV activity of some medicinal plants; 2010.
  89. Rege AA, Ambaye RY, Deshmukh RA. Evaluation of in vitro inhibitory effect of selected plants and Shilajit on HIV-reverse transcriptase; 2012.
  90. Rege A, Chowdhary AS. Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int J Pharm Sci Rev Res. 2014;25:315-8.
  91. Rege A, Dahake R, Roy S, Chowdhary A. Screening of natural products for anti-HIV potential: an in vitro approach. J VirolCurr Res. 2015;1(7).
  92. Das U, Islam MS. A review study on different plants in Malvaceae family and their medicinal uses. Am J Biomed Sci Res. 2019;3(2):94-7.
  93. Balkrishna A, Khandrika L, Varshney A. GiloyGhanvati (Tinosporacordifolia (Willd.) Hook. f. and Thomson) reversed SARS-CoV-2 viral spike-protein induced disease phenotype in the xenotransplant model of humanized zebrafish. Front Pharmacol. 2021;534.
  94. Chowdhury P. In silico investigation of phytoconstituents from Indian medicinal herb ’Tinospora cordifolia (giloy)’against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn. 2021;39(17):6792-809. doi: 10.1080/07391102.2020.1803968, PMID 32762511.
  95. Ambalavanan R, John AD, Selvaraj AD. Nano‐encapsulated Tinospora cordifolia (Willd.) using poly (D, L‐lactide) nanoparticles educe effective control in streptozotocin‐induced type 2 diabetic rats. IET Nanobiotechnology. 2020;14(9):803-8. doi: 10.1049/iet-nbt.2020.0085, PMID 33399111.
  96. Jena S, Munusami P, Mm B, Chanda K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. VirusDisease. 2021;32(1):65-77. doi: 10.1007/s13337-021-00666-7, PMID 33778129.