References

 

  1. Kumari, A.,Kumar, R.,Rani, P., Beniwal, V., Kapoor, K.K.,&Sharma, P.K.(2014). Microbes in the service of mankind(178–200).
  2. Chandini, Kumar, R., Kumar, R.,&Prakash, O.(2019). Research trends in environmentalsciences (pp.69–86).
  3. Ye,L.,Zhao,, Bao, E., Li, J., Zou, Z., &Cao, K.(2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. ScientificReports, 10(1),177. doi:10.1038/s41598-019-56954-2
  4. Mhlongo, M. I.,Piater, L.A., Madala, N.E., Labuschagne,N., &Dubery, I. A.(2018). Frontplant sci. Retrieved from https://doing.org/10.3389/Fpls.2018.00112
  5. Singh, R.(2018). New and futuredevelopments in microbialBiotechnologyandBioengineering (pp. 107–114). doi:1016/B978-0444-6419-5.00008-0.
  6. Haldar, S., &SenGupta, S.(2015). Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 9, 1–7. doi:2174/1874285801509010001
  7. Ying, N. H., Donychacko, M., &Huang, C.C.(2017). Plant-MicrobeEcology:Interactions of plants and symbiotic Microbial communities. doi:5772/intechopen.69088.
  8. Takujiohyama. (2010). Nitrogen Assimilation in plants (pp.1–18).
  9. Romano, I., Ventorino, V.,&Pepe, O.(2020). Frontiers in Plant Science. doi:3389;gold.2020.00006
  10. Binyamin, R., Nadeem,S. M., Akhtar, S., Khan, M.Y., &Anjum, R.(2019). Beneficial and pathogenic plant-microbe interactions: A review. Soil and Environment, 38(2), 127–150. doi:25252/SE/19/71659
  11. Trivedi,P., Delgado-Baquerizo, M.,Anderson, I. C., &Singh, B. K.(2016). Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Frontiers in Plant Science, 7, 990. doi:3389/fpls.2016.00990
  12. Yadav, B. R., Akhtar, M. S., &Panwar, J.(2015).Plant microbes symbiosis: Applied Facets (pp.127–145). doi:1007/978-81-322-2068-8-6.
  13. Braeken, K., Daniels, R., Ndayizeye, M., Vanderleyden, J.,&Michiels, J.(2008).Molecular mechanisms of plant and microbe coexistence(pp.265–280). doi:1007/978-3-540-75575-3-11.
  14. Van Garbevap, Ja, V., &Van, E.JD. (2004). Microbial diversity in soil:selection microbial populations by plant and soil type and implications for diseasesuppressiveness.AnuRev phytopathology, 42, 243–270. doi:1146/annual.phyto.42.012604.135455
  15. Mohammed, &Zigau. (2016). Gashua.Journal of Science of Science andHumanities, 2(1), 39–47.
  16. Rao, D.L.N.(2007). Journal of the Indian Society of SoilScience, 55(4).
  17. Kumar, D., Kumar, M., Verma, P.,&Shamim, M. (2017). microbial biotechnology: Role of microbes in sustainable agriculture (pp.416–449).
  18. Hao, Z., Xie, W., Jiang, X., Wu, Z., Zhang, X., &Chen, B.(2019). Arbuscular Mycorrhizal Fungus Improves Rhizobium–Glycyrrhiza Seedling Symbiosis under Drought Stress.Agronomy, 9(10), 572. doi:3390/agronomy9100572
  19. Jacoby, R.,Peukert, M., Succurro, A.,Koprivova,A., & Kopriva, S.(2017). The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions.Frontiers in PlantScience, 8, 1617. doi:3389/fpls.2017.01617
  20. Bhatti, A. , Haq, S., &Bhat,R. A.(2017). Actinomycete’s benefaction role in soil andplant health. MicrobialPathogenesis, 111, 458–467. doi:10.1016/j.micpath.2017.09.036
  21. Iqbal, N., Agrawal, A.,Dubey, S.,& Kumar, J.(2020).Role of decomposers in Agricultural waste management. doi:5772/intechopen.93816.
  22. Patil, H. J., &Chaudhari, B. L.(2011). In book.Environmental Biotechnology.
  23. Bucking, H.,Liepold, E.,&Ambilwade, P.(2012). The role of the mycorrhizal symbiosis in Nutrient uptake of plants and the Regulatory mechanisms underlyingthese transport processes. doi:5772/52570.
  24. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., &Nasrulhaq Boyce, A.(2016) Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules, 21(5), 573. doi:3390/molecules21050573
  25. Mishra, J.,Prakash, J., &Arora, N.K.(2016). climate change andEnvironmentalsustainability, 4(2), 137.
  26. Nagargade, M.,Tyagi, V.,&Singh, M.K.(2018). Role of rhizosphere microbes in the soil (pp.205–223). doi:1007/978-981-10-8402-7_8.
  27. Hossain, M.M., &Sultana, F.(2020). Application and mechanisms of plant growth-promoting fungi(PGPF) for Phtytostimulation. doi:5772/interchopen.92338.
  28. Begum,N., Qin, C., Ahanger, M.A.,Raza, S.,Khan, M.I., Ashraf, M., . . .Zhang, L.(2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 10, 1068. doi:3389/fpls.2019.01068
  29. Jangra, M.R.,Jangra, S.,&Nehra, K. (2018). crop Improvement for sustainability.(pp.193.222).
  30. Bhatt, P., &Nailwal, T.K.(2018). crop improvement through microbialbiotechnologyhttps://doi.org/10.1016/B978-0-444-63987-5.00011-6.
  31. Chittora, D.,Meena, M.,Barupal, T.,Swapnil, P., &Sharma, K.(2020). Cyanobacteriaas a source of biofertilizers for sustainable agriculture, Biochemistry and Biophysics Reports, Vol (22).
  32. Hayat, R., Ali, S., Amara, U., Khalid, R., &Ahmed, I.(2010). Soil beneficial bacteria and their role inplant growth promotion: A review. Annals of Microbiology, 60(4), (579–598). doi:1007/s13213-010-0117-1
  33. Bhardwaj, D., Ansari, M.W., Sahoo, R.K., &Tuteja, N.(2014). Biofertilizers function as a keyplayer in sustainable agriculture By improving soil fertility, plant tolerance, and cropproductivity. Microbial Cell Factories, 13, 66. doi:1186/1475-2859-13-66
  34. Ahirwar, N.K., Singh, R., Chaurasia, S., Chandra, R., Prajapati,S., &Romana, S.(2019).Effective role of beneficialmicrobes in achieving sustainable agriculture andeco-friendly environment development goals.A Review. Frontiers in Environmental Microbiology, 5(6), (111–123). doi:11648/j.fem.20190506.12
  35. Olanrewaju, O. S., Glick, B.R.,&Babalola, O.O.(2017). Mechanisms of action of plant growth promoting bacteria. WorldJournal of Microbiology and Biotechnology, 33(11), 197. doi:1007/s11274-017-2364-9
  36. Singh, D., Singh, J.,&Kumar, A.(2017). Probiotics and plant health (pp.579–587). doi:1007/978-981-10-3473-2-26.
  37. Shelake,R. M., Pramanik, D., & Kim, J. (2019).Microorganisms, 7(8), 269. doi:10.3390/microorganisms, PubMed: 7080269
  38. Chen, K., Wang, Y., Zhang, R., Zhang, H., &Gao, C.(2019). CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of PlantBiology, 70(1), (667–697). doi:1146/annurev-arplant-050718-100049
  39. Younis, A., Siddique, M.I., Kim, C. K., &Lim, K. B.(2014) RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding. InternationalJournal of BiologicalSciences, 10(10), 1150–1158. doi:7150/ijbs.10452
  40. Afroz, A.,Zahur, M.,Zeeshan, N.,&Komatsu, S.(2013). Plant-bacterium interactions analyzed by proteomics. Frontiers in Plant Science, 4(21), 21. doi:3389/fpls.2013.00021
  41. Wang, S., Yan, Z., Wang, P., Zheng, X., &Fan, J.(2020). Comparative metagenomicsreveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of the Qinhuangdao mariculture area. PloS One, 15(6), e0234128. doi:1371/journal.pone.0234128
  42. Yang, J.(2012). metagenomics: A new approach for microbial identification. Air and Water Borne Diseases, 01(4), Dis1. doi:4172/2167-7719.1000e115
  43. Crump, B.C., Wojahh, J.M.,Tomas,F., &Mueller, R.S.(2018). Front microbial. doi:3389/fmicb.2018.00388.
  44. Fraser, M., Eisen, J. A., &Salzberg, S. L.(2000).Microbial genome sequencing.Nature, 406(6797), (799–803). doi:10.1038/35021244