Skip to content
References
- Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1),226–235. https://doi.org/10.4161/viru.25991
- Summers, W.C. (2004). Bacteriophage research early history, p 528. In Kutter E, Sulakvelidze A (ed), Bacteriophages: biology and applications. CRC Press, Boca Raton, FL.
- Pires, D. P., Vilas Boas, D., Sillankorva, S., & Azeredo, J. (2015). Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. Journal of virology, 89(15),7449–7456. https://doi.org/10.1128/JVI.00385-15
- Twort, F. (1915). An investigation on the nature of ultramicroscopic viruses. Lancet, 11, 1241-1243.
- d’Hérelle, F. (1917). Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes rendus de l’Académie des Sciences, 165, 373-375.
- Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature biotechnology, 32(11),1146–1150. https://doi.org/10.1038/nbt.3043
- Chen, Z., Guo, L., Zhang, Y., et al. (2014). Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. The Journal of Clinical Investigation, 124(8):3391-3406. DOI: 1172/jci72517
- Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature biotechnology, 32(11), 1141–1145. https://doi.org/10.1038/nbt.3011
- Devlin, A. S., Marcobal, A., Dodd, D., Nayfach, S., Plummer, N., Meyer, T., Pollard, K. S., Sonnenburg, J. L., & Fischbach, M. A. (2016). Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell host & microbe, 20(6),709–715. https://doi.org/10.1016/j.chom.2016.10.021
- Kutateladze, M., & Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends in biotechnology, 28(12), 591–595. https://doi.org/10.1016/j.tibtech.2010.08.001
- Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: treatment of human infections. Current pharmaceutical biotechnology, 11(1), 69–86. https://doi.org/10.2174/138920110790725401
- Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 104(27),11197–11202. https://doi.org/10.1073/pnas.0704624104
- Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634. https://doi.org/10.1073/pnas.0800442106
- Maynard, N. D., Birch, E. W., Sanghvi, J. C., Chen, L., Gutschow, M. V., & Covert, M. W. (2010). A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS genetics, 6(7), e1001017. https://doi.org/10.1371/journal.pgen.1001017
- Shen, T. C., Albenberg, L., Bittinger, K., Chehoud, C., Chen, Y. Y., Judge, C. A., Chau, L., Ni, J., Sheng, M., Lin, A., Wilkins, B. J., Buza, E. L., Lewis, J. D., Daikhin, Y., Nissim, I., Yudkoff, M., Bushman, F. D., & Wu, G. D. (2015). Engineering the gut microbiota to treat hyperammonemia. The Journal of clinical investigation, 125(7),2841–2850. https://doi.org/10.1172/JCI79214
- Międzybrodzki, R., Borysowski, J., Weber-Dąbrowska, B., Fortuna, W., Letkiewicz, S., Szufnarowski, K., Pawełczyk, Z., Rogóż, P., Kłak, M., Wojtasik, E., & Górski, A. (2012). Clinical aspects of phage therapy. Advances in virus research, 83, 73–121. https://doi.org/10.1016/B978-0-12-394438-2.00003-7
- Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour, K. C., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G. F., & Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature medicine, 25(5), 730–733. https://doi.org/10.1038/s41591-019-0437-z
- Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., Benson, C. A., … Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial agents and chemotherapy, 61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17
- Céline Verheust, Katia Pauwels, Jacques Mahillon, Donald R. Helinski, and Philippe Herman (2010). Contained Use of Bacteriophages: Risk Assessment and Biosafety Recommendations. Applied Biosafety, 15(1), 32-44. 1177/153567601001500106
- Potera C. (2013). Phage renaissance: new hope against antibiotic resistance. Environmental health perspectives, 121(2),a48–a53. https://doi.org/10.1289/ehp.121-a48
- Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. http://dx.doi.org/10.1007/s10156-005-0408-9
- Kutateladze M, Adamia R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595. http://dx.doi.org/10.1016/j.tibtech.2010.08.001
- Brüssow H. (2005). Phage therapy: the Escherichia coli experience. Microbiology (Reading, England), 151(Pt 7), 2133–2140. https://doi.org/10.1099/mic.0.27849-0
- Bruttin, A., & Brüssow, H. (2005). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial agents and chemotherapy, 49(7), 2874–2878. https://doi.org/10.1128/AAC.49.7.2874-2878.2005
- Marza, J. A., Soothill, J. S., Boydell, P., & Collyns, T. A. (2006). Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns : journal of the International Society for Burn Injuries, 32(5), 644–646. https://doi.org/10.1016/j.burns.2006.02.012
- Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., & Lu, T. K. (2016). Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and molecular biology reviews:MMBR, 80(3),523–543. https://doi.org/10.1128/MMBR.00069-15
- Marinelli, L. J., Hatfull, G. F., & Piuri, M. (2012). Recombineering: A powerful tool for modification of bacteriophage genomes. Bacteriophage, 2(1),5–14. https://doi.org/10.4161/bact.18778
- Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Bacteriophage-based synthetic biology for the study of infectious diseases. Current opinion in microbiology, 19,59–69. https://doi.org/10.1016/j.mib.2014.05.022
- Saeidi, N., Wong, C. K., Lo, T. M., Nguyen, H. X., Ling, H., Leong, S. S., Poh, C. L., & Chang, M. W. (2011). Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular systems biology, 7, 521. https://doi.org/10.1038/msb.2011.55
- Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS microbiology letters, 363(4),fnw002. https://doi.org/10.1093/femsle/fnw002
- Cooper, C. J., Khan Mirzaei, M., & Nilsson, A. S. (2016). Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics. Frontiers in microbiology, 7, 1209. https://doi.org/10.3389/fmicb.2016.01209
- Ando H, Lemire S, Pires DP, Lu TK. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 2015 Sep 23; 1(3):187-196. doi: 1016/j.cels.2015.08.013 PMID: 26973885; PMCID: PMC4785837.
- Chen, M., Zhang, L., Xin, S., Yao, H., Lu, C., & Zhang, W. (2017). Inducible Prophage Mutant of Escherichia coliCan Lyse New Host and the Key Sites of Receptor Recognition Identification. Frontiers in microbiology, 8, 147. https://doi.org/10.3389/fmicb.2017.00147
- Gebhart, D., Williams, S. R., & Scholl, D. (2017). Bacteriophage SP6 encodes a second tail spike protein that recognizes Salmonella enterica serogroups C2and C3. Virology, 507, 263–266. https://doi.org/10.1016/j.virol.2017.02.025
- Hawkins, S. A., Layton, A. C., Ripp, S., Williams, D., & Sayler, G. S. (2008). Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1. Virology journal, 5, 97. https://doi.org/10.1186/1743-422X-5-97
- Heilpern AJ, Waldor MK. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol. 2003 Feb;185(3):1037-44. doi: 1128/jb.185.3.1037-1044.2003 PMID: 12533480; PMCID: PMC142820.
- Lin, T. Y., Lo, Y. H., Tseng, P. W., Chang, S. F., Lin, Y. T., & Chen, T. S. (2012). A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PloS one, 7(2), e30954. https://doi.org/10.1371/journal.pone.0030954
- Nguyen, A. H., Molineux, I. J., Springman, R., & Bull, J. J. (2012). Multiple genetic pathways to similar fitness limits during viral adaptation to a new host. Evolution; international journal of organic evolution, 66(2), 363–374. https://doi.org/10.1111/j.1558-5646.2011.01433.x
- Scholl, D., Cooley, M., Williams, S. R., Gebhart, D., Martin, D., Bates, A., & Mandrell, R. (2009). An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrobial agents and chemotherapy, 53(7), 3074–3080. https://doi.org/10.1128/AAC.01660-08
- Yoichi, M., Abe, M., Miyanaga, K., Unno, H., & Tanji, Y. (2005). Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Journal of biotechnology, 115(1), 101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003
- Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular cell, 66(5), 721–728.e3. https://doi.org/10.1016/j.molcel.2017.04.025
- Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature reviews. Microbiology, 8(5), 317–327. https://doi.org/10.1038/nrmicro2315
- Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews: MMBR, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10
- Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of internal medicine, 151(5), 886–895.
- Neu H. C. (1992). The crisis in antibiotic resistance. Science (New York, N.Y.), 257 (5073), 1064–1073. https://doi.org/10.1126/science.257.5073.1064
- Wright, G. D., & Sutherland, A. D. (2007). New strategies for combating multidrug-resistant bacteria. Trends in molecular medicine, 13(6),260–267. https://doi.org/10.1016/j.molmed.2007.04.004
- Beck, A., Wurch, T., Bailly, C., & Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nature reviews. Immunology, 10(5), 345–352. https://doi.org/10.1038/nri2747
- Foltz, I. N., Karow, M., & Wasserman, S. M. (2013). Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. Circulation, 127(22), 2222–2230. https://doi.org/10.1161/CIRCULATIONAHA.113.002033
- Gladstone, E. G., Molineux, I. J., & Bull, J. J. (2012). Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phage. Journal of biological engineering, 6(1), 13. https://doi.org/10.1186/1754-1611-6-13
- Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 104(27),11197–11202. https://doi.org/10.1073/pnas.0704624104
- Montag, D., Riede, I., Eschbach, M. L., Degen, M., & Henning, U. (1987). Receptor-recognizing proteins of T-even type bacteriophages. Constant and hypervariable regions and an unusual case of evolution. Journal of molecular biology, 196(1),165–174. https://doi.org/10.1016/0022-2836(87)90519-5
- Pouillot, F., Blois, H., & Iris, F. (2010). Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecurity and bioterrorism : biodefense strategy, practice, and science, 8(2), 155–169. https://doi.org/10.1089/bsp.2009.0057
- Tétart, F., Repoila, F., Monod, C., & Krisch, H. M. (1996). Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. Journal of molecular biology, 258(5),726–731. https://doi.org/10.1006/jmbi.1996.0281
- Trojet, S. N., Caumont-Sarcos, A., Perrody, E., Comeau, A. M., & Krisch, H. M. (2011). The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage’s host specificity. Genome biology and evolution, 3, 674–686. https://doi.org/10.1093/gbe/evr059
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Water, P. (2007). Molecular biology of the cell (5th ed.) Garland Science, New York, NY.
- Snyder, L., Peters, J.E., Henkin, T.M., & Champness, W. (2013). Molecular genetics of bacteria (4th ed.) ASM Press, Washington, DC.
- Loessner, M. J., Rees, C. E., Stewart, G. S., & Scherer, S. (1996). Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Applied and environmental microbiology, 62(4), 1133–1140. https://doi.org/10.1128/AEM.62.4.1133-1140.1996
- Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., & Hu, F. (2013). Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PloS one, 8(7), e68562. https://doi.org/10.1371/journal.pone.0068562
- Ellis, H. M., Yu, D., DiTizio, T., & Court, D. L. (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6742–6746. https://doi.org/10.1073/pnas.121164898
- Court, D. L., Sawitzke, J. A., & Thomason, L. C. (2002). Genetic engineering using homologous recombination. Annual review of genetics, 36, 361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104
- Marinelli, L. J., Piuri, M., Swigonová, Z., Balachandran, A., Oldfield, L. M., van Kessel, J. C., & Hatfull, G. F. (2008). BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PloS one, 3(12), e3957. https://doi.org/10.1371/journal.pone.0003957
- Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., & Court, D. L. (2009). Recombineering: a homologous recombination-based method of genetic engineering. Nature protocols, 4(2), 206–223. https://doi.org/10.1038/nprot.2008.227
- Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C., & Court, D. L. (2004). In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Virology, 319(2),185–189. https://doi.org/10.1016/j.virol.2003.11.007
- Sarkis, G. J., Jacobs, W. R., Jr, & Hatfull, G. F. (1995). L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Molecular microbiology, 15(6),1055–1067. https://doi.org/10.1111/j.1365-2958.1995.tb02281.x
- Tanji, Y., Furukawa, C., Na, S. H., Hijikata, T., Miyanaga, K., & Unno, H. (2004). Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. Journal of biotechnology, 114(1-2),11–20. https://doi.org/10.1016/j.jbiotec.2004.05.011
- Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97(11),5978–5983. https://doi.org/10.1073/pnas.100127597
- Copeland, N. G., Jenkins, N. A., & Court, D. L. (2001). Recombineering: a powerful new tool for mouse functional genomics. Nature reviews. Genetics, 2(10), 769–779. https://doi.org/10.1038/35093556
- Swaminathan, S., Ellis, H. M., Waters, L. S., Yu, D., Lee, E. C., Court, D. L., & Sharan, S. K. (2001). Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis (New York, N.Y. : 2000), 29(1), 14–21. https://doi.org/10.1002/1526-968x(200101)29:1<14::aid-gene1001>3.0.co;2-x
- Sarov, M., Schneider, S., Pozniakovski, A., Roguev, A., Ernst, S., Zhang, Y., Hyman, A. A., & Stewart, A. F. (2006). A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature methods, 3(10), 839–844. https://doi.org/10.1038/nmeth933
- Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nature genetics, 20(2), 123–128. https://doi.org/10.1038/2417
- Muyrers, J. P., Zhang, Y., Testa, G., & Stewart, A. F. (1999). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic acids research, 27(6), 1555–1557. https://doi.org/10.1093/nar/27.6.1555
- Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640–6645. https://doi.org/10.1073/pnas.120163297
- Piuri, M., & Hatfull, G. F. (2006). A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Molecular microbiology, 62(6), 1569–1585. https://doi.org/10.1111/j.1365-2958.2006.05473.x
- Ranallo, R. T., Barnoy, S., Thakkar, S., Urick, T., & Venkatesan, M. M. (2006). Developing live Shigella vaccines using lambda Red recombineering. FEMS immunology and medical microbiology, 47(3),462–469. https://doi.org/10.1111/j.1574-695X.2006.00118.x
- Lopes, A., Amarir-Bouhram, J., Faure, G., Petit, M. A., & Guerois, R. (2010). Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic acids research, 38(12), 3952–3962. https://doi.org/10.1093/nar/gkq096
- Levin, B. R., & Bull, J. J. (2004). Population and evolutionary dynamics of phage therapy. Nature reviews. Microbiology, 2(2),166–173. https://doi.org/10.1038/nrmicro822
- Hagens, S., & Bläsi, U. (2003). Genetically modified filamentous phage as bactericidal agents: a pilot study. Letters in applied microbiology, 37(4), 318–323. https://doi.org/10.1046/j.1472-765x.2003.01400.x
- Fairhead H. (2009). SASP gene delivery: a novel antibacterial approach. Drug news & perspectives, 22(4), 197–203. https://doi.org/10.1358/dnp.2009.22.4.1367708
- Smartt, A. E., Xu, T., Jegier, P., Carswell, J. J., Blount, S. A., Sayler, G. S., & Ripp, S. (2012). Pathogen detection using engineered bacteriophages. Analytical and bioanalytical chemistry, 402(10),3127–3146. https://doi.org/10.1007/s00216-011-5555-5
- Wolber, P. K., & Green, R. L. (1990). Detection of bacteria by transduction of ice nucleation genes. Trends in biotechnology, 8(10),276–279. https://doi.org/10.1016/0167-7799(90)90195-4
- Edgar, R., McKinstry, M., Hwang, J., Oppenheim, A. B., Fekete, R. A., Giulian, G., Merril, C., Nagashima, K., & Adhya, S. (2006). High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4841–4845. https://doi.org/10.1073/pnas.0601211103
- Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C., & Venter, J. C. (2003). Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15440–15445. https://doi.org/10.1073/pnas.2237126100
- Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H., Calvey, C. H., … Venter, J. C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science (New York, N.Y.), 329(5987),52–56. https://doi.org/10.1126/science.1190719
- Gladstone, E. G., Molineux, I. J., & Bull, J. J. (2012). Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phage. Journal of biological engineering, 6(1), 13. https://doi.org/10.1186/1754-1611-6-13
- Westra, E. R., Buckling, A., & Fineran, P. C. (2014). CRISPR-Cas systems: beyond adaptive immunity. Nature reviews. Microbiology, 12(5),317–326. https://doi.org/10.1038/nrmicro3241
- Kiro, R., Shitrit, D., & Qimron, U. (2014). Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA biology, 11(1), 42–44. https://doi.org/10.4161/rna.27766
- Chan, L. Y., Kosuri, S., & Endy, D. (2005). Refactoring bacteriophage T7. Molecular systems biology, 1, 2005.0018. https://doi.org/10.1038/msb4100025
- Lu TK, Koeris MS, Chevalier B, Holder J, McKenzie G, Brownell D. May (2013). Recombinant phage and methods. US patent, 13/627,060.
- Curtin, J. J., & Donlan, R. M. (2006). Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrobial agents and chemotherapy, 50(4),1268–1275. https://doi.org/10.1128/AAC.50.4.1268-1275.2006
- Sillankorva, S., Neubauer, P., & Azeredo, J. (2008). Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC biotechnology, 8, 79. https://doi.org/10.1186/1472-6750-8-79
- Sillankorva, S., Neubauer, P., & Azeredo, J. (2010). Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling, 26(5), 567–575. https://doi.org/10.1080/08927014.2010.494251
- Fu, W., Forster, T., Mayer, O., Curtin, J. J., Lehman, S. M., & Donlan, R. M. (2010). Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrobial agents and chemotherapy, 54 (1), 397–404. https://doi.org/10.1128/AAC.00669-09
- Rhoads, D. D., Wolcott, R. D., Kuskowski, M. A., Wolcott, B. M., Ward, L. S., & Sulakvelidze, A. (2009). Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. Journal of wound care, 18(6), 237–243. https://doi.org/10.12968/jowc.2009.18.6.42801
- McVay, C. S., Velásquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial agents and chemotherapy, 51(6), 1934–1938. https://doi.org/10.1128/AAC.01028-06
- Wright, A., Hawkins, C. H., Anggård, E. E., & Harper, D. R. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery, 34(4), 349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x
- Carmody, L. A., Gill, J. J., Summer, E. J., Sajjan, U. S., Gonzalez, C. F., Young, R. F., & LiPuma, J. J. (2010). Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. The Journal of infectious diseases, 201(2), 264–271. https://doi.org/10.1086/649227
- Hawkins C, Harper D, Burch D, Anggård E, Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol. 2010 Dec 15;146(3-4):309-13. doi: 1016/j.vetmic.2010.05.014. Epub 2010 May 12. PMID: 20627620.
- Fukuda, K., Ishida, W., Uchiyama, J., Rashel, M., Kato, S., Morita, T., Muraoka, A., Sumi, T., Matsuzaki, S., Daibata, M., & Fukushima, A. (2012). Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PloS one, 7(10), e47742. https://doi.org/10.1371/journal.pone.0047742
- Trigo, G., Martins, T. G., Fraga, A. G., Longatto-Filho, A., Castro, A. G., Azeredo, J., & Pedrosa, J. (2013). Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS neglected tropical diseases, 7(4), e2183. https://doi.org/10.1371/journal.pntd.0002183
- Samson, J. E., Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages: defeating bacterial defences. Nature reviews.Microbiology, 11(10),675–687. https://doi.org/10.1038/nrmicro3096
- Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634. https://doi.org/10.1073/pnas.0800442106
- Yoichi, M., Abe, M., Miyanaga, K., Unno, H., & Tanji, Y. (2005). Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Journal of biotechnology, 115(1), 101–107. https://doi.org/10.1016/j.jbiotec.2004.08.003
- Heilpern AJ, Waldor MK. (2003). pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185:1037–1044. http://dx.doi.org/10.1128/JB.185.3.1037-1044.2003
- Ando H, Lemire S, Pires DP, Lu TK. (2015). Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1:187–196. http://dx.doi.org/10.1016/j.cels.2015.08.013
- Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66–85. https://doi.org/10.4161/bact.1.2.15845
- Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2),111–114. https://doi.org/10.4161/bact.1.2.14590
- Paul, V. D., Sundarrajan, S., Rajagopalan, S. S., Hariharan, S., Kempashanaiah, N., Padmanabhan, S., Sriram, B., & Ramachandran, J. (2011). Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC microbiology, 11,195. https://doi.org/10.1186/1471-2180-11-195
- Loessner M, Rees C, Stewart G, Scherer S. (1996). Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria Appl Environ Microbiol 62:1133–1140.
- Piuri, M., Jacobs, W. R., Jr, & Hatfull, G. F. (2009). Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PloS one, 4(3), e4870. https://doi.org/10.1371/journal.pone.0004870
- Bar, H., Yacoby, I., & Benhar, I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC biotechnology, 8, 37. https://doi.org/10.1186/1472-6750-8-37
- Frenkel, D., & Solomon, B. (2002). Filamentous phage as vector-mediated antibody delivery to the brain. Proceedings of the National Academy of Sciences of the United States of America, 99(8),5675–5679. https://doi.org/10.1073/pnas.072027199
- Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moore, J. P., Nabel, G. J., Sodroski, J., Wilson, I. A., & Wyatt, R. T. (2004). HIV vaccine design and the neutralizing antibody problem. Nature immunology, 5(3), 233–236. https://doi.org/10.1038/ni0304-233
- Sathaliyawala, T., Rao, M., Maclean, D. M., Birx, D. L., Alving, C. R., & Rao, V. B. (2006). Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines. Journal of virology, 80 (15), 7688–7698. https://doi.org/10.1128/JVI.00235-06
- Ren, Z. J., Tian, C. J., Zhu, Q. S., Zhao, M. Y., Xin, A. G., Nie, W. X., Ling, S. R., Zhu, M. W., Wu, J. Y., Lan, H. Y., Cao, Y. C., & Bi, Y. Z. (2008). Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine, 26(11),1471–1481. https://doi.org/10.1016/j.vaccine.2007.12.053
- Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., Chiang, Y. M., & Belcher, A. M. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science (New York, N.Y.), 312(5775), 885–888. https://doi.org/10.1126/science.1122716
- Lee, Y. J., Yi, H., Kim, W. J., Kang, K., Yun, D. S., Strano, M. S., Ceder, G., & Belcher, A. M. (2009). Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science (New York, N.Y.), 324(5930), 1051–1055. https://doi.org/10.1126/science.1171541
- Murugesan, M., Abbineni, G., Nimmo, S. L., Cao, B., & Mao, C. (2013). Virus-based photo-responsive nanowires formed by linking site-directed mutagenesis and chemical reaction. Scientific reports, 3, 1820. https://doi.org/10.1038/srep01820
- Rong, J., Lee, L. A., Li, K., Harp, B., Mello, C. M., Niu, Z., & Wang, Q. (2008). Oriented cell growth on self-assembled bacteriophage M13 thin films. Chemical communications (Cambridge, England), (41), 5185–5187. https://doi.org/10.1039/b811039e
- Merzlyak, A., Indrakanti, S., & Lee, S. W. (2009). Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano letters, 9(2), 846–852. https://doi.org/10.1021/nl8036728
- Yoo, S. Y., Merzlyak, A., & Lee, S. W. (2014). Synthetic phage for tissue regeneration. Mediators of inflammation, 2014, 192790. https://doi.org/10.1155/2014/192790
- Mao, C., Liu, A., & Cao, B. (2009). Virus-based chemical and biological sensing. Angewandte Chemie (International ed. in English), 48(37),6790–6810. https://doi.org/10.1002/anie.200900231
- Lee, J. W., Song, J., Hwang, M. P., & Lee, K. H. (2013). Nanoscale bacteriophage biosensors beyond phage display. International journal of nanomedicine, 8, 3917–3925. https://doi.org/10.2147/IJN.S51894
- Yi, H., Ghosh, D., Ham, M. H., Qi, J., Barone, P. W., Strano, M. S., & Belcher, A. M. (2012). M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano letters, 12(3), 1176–1183. https://doi.org/10.1021/nl2031663
- Lee, S. W., Mao, C., Flynn, C. E., & Belcher, A. M. (2002). Ordering of quantum dots using genetically engineered viruses. Science (New York, N.Y.), 296(5569), 892–895. https://doi.org/10.1126/science.1068054
- Lee, S.W., Wood, B.M., & Belcher, A.M. (2003). Chiral smectic C structures of virus-based films. Langmuir, 19 (5):1592–1598. http://dx.doi.org/10.1021/la026387w
- Lee, S.W., Lee, S.K., & Belcher, A.M. (2003). Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv Mater, 15(9):689–692. http://dx.doi.org/10.1002/adma.200304818
- Ni, J., Lee, S.W., White, J.M., & Belcher, A.M. (2004). Molecular orientation of a ZnS-nanocrystal-modified M13 virus on a silicon substrate. J Polym Sci Part B Polym Phys, 42(4):629–635. http://dx.doi.org/10.1002/polb.10754
- Nam, K.T., Peelle, B.R., Lee, S.W., & Belcher, A.M. (2004). Genetically driven assembly of nanorings based on the M13 virus. Nano Lett, 4(1):23–27. http://dx.doi.org/10.1021/nl0347536
- Lee, S.W., & Belcher, A.M. (2004). Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett, 4(3):387–390. http://dx.doi.org/10.1021/nl034911t
- Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., Chiang, Y. M., & Belcher, A. M. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science (New York, N.Y.), 312(5775), 885–888. https://doi.org/10.1126/science.1122716